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In this paper we give a new characterization of the classical orthogonal
polynomials (Jacobi, Laguerre, and Hermite polynomials) by a special property of
the sequences in their recurrence formula. The results also allow an easy derivation
of the asymptotic distribution of the zeros of the classical orthogonal polynomials.
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1. INTRODUCTION

There is an extensive literature about the mathematical properties of
orthogonal polynomials and their applications in various areas. In the wide
class of orthogonal systems the classical polynomials are of particular
interest: the Jacobi polynomials p~~.P) (x), orthogonal (on the interval
[ -1, 1]) with respect to the measure (l - x)~ (l + x)P dx (:x, f3 > -1); the
Laguerre polynomials L~~'(x), orthogonal with respect to the measure
x~e-x dx (on [0,(0), C( > -1); and the Hermite polynomials which are
orthogonal (on the real line) with respect to the measure e- x2 dx.
Characterizations of these polynomials are given in [2, 3]. In this paper we
present a new characterization of the classical orthogonal polynomials
which is based on the sequence from the recurrence formula (Section 3)
and allows a very easy derivation of the asymptotic distribution of the
zeros of the polynomials (Section 4).
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2. PRELIMINARIES

Let f!( = (- 00, 00), [0, (0), or [0, 1] and J1. denote a probability measure
on f!( with all moments existing. The Stieltjes transform of Jl has the
continued fraction expansion

(a) f!(=[0,1] II dJl(x) =.!.l f!l W ...,
o z - x \z - \1 - \z -

(b) f!( = [0, (0)

where di~O;

(c) f!(=(-oo,oo)

1
00 dJl(x)=.!.l ~ d2 1

o z-x Iz-Il - Iz -""

foo dJ1.(x) __1_1_ ~ ~
-00 z-x -lz-b l -lz-b2 -lz-b3 ... ,

where ai~O.

The quantities {pJ i",lo {di};"'lo {ai' bi};",I can be expressed by deter­
minants of the moments of the measure J1. (see [6] or [9]). In this sense
every probability measure on [0, 1], [0, 00), ( - 00, (0) is oharacterized by
the sequence {Pi};",I' {dJ i'" I' {ai' bi};"'I' respectively. If this sequence is
finite (i.e., PiE {O, 1}, di =0, or a i =° for some i) the corresponding
measure has finite support which is given by the zeros of the polynomial
in the denominator of its continuous fraction expansion. The following
lemma is concerned with the support of a reversed terminating sequence.
Its proof is given in the Appendix.

LEMMA 2.1. (a) Probability measures (on [0,1]) corresponding to the
sequences (PI' ..·,Pm' 0) and (Pm' ""PI' 0) have the same support.

(b) Probability measures (on [0, 1]) corresponding to the sequences
(PI' ..., Pm' 1) and (qm' ..., ql' 1) have the same support.

(c) Probability measures (on [0, 00)) corresponding to the sequences
(dl , ..., dm, 0) and (dm, ..., dl , 0) have the same support.

(d) Probability measures (on (- 00,00)) corresponding to the sequen-
ces (a l • ...• am, 0) and (am, , ai, 0) have the same support.

hi • ...• bm , bm + 1 bm+l, , b2, hi

The following lemma gives the sequences corresponding to classical
orthogonal polynomials (see [13]).
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LEMMA 2.2. (a) The corresponding probability measure (on [0, 1]) of
the sequence

k f3+k
PZk-l= rx+f3+2k (k~ 1)

is the "Jacobi" measure with density proportional to x P( 1- x)~ (rx, f3 > -1).

(b) The corresponding probability measure (on [0, 00)) of the
sequence

dZk - 1 = rx + k (k ~ 1)

is the "Laguerre" measure with density proportional to x~e - x (rx > - 1).

(c) The corresponding probability measure (on (- 00, 00)) of the
sequence

(k ~ 1)

is the "Hermite" measure with density proportional to e- x2
•

3. CHARACTERIZATION OF THE CLASSICAL ORTHOGONAL POLYNOMIALS

Consider a measure Ji on [0, 1] with infinite support and corresponding
sequence p"pz, ... (note that p;E(O, 1) because Ji has infinite support).
Define Jin (n EN) as the probability measure (on [0, 1]) which corresponds
to the "truncated" sequence P"Pz, ""PZn-l' 0 and Ji~ as the measure
which corresponds to the reversed sequence PZn _ 1, P2n _ 2, ..., p, , O.
Replacing the {p;};;> , by {d;};;> , we have a similar definition on the
half line [0, 00). For a probability measure on (- 00, 00) we define Jim
as the probability measure which corresponds to the truncated sequence
(a l • .... an_1 0) and JiR as the measure corresponding to the "reserved"hI • .... bn-l bn n

sequence (an-I • .... ai, 0). From the continued fraction expansions given
bn , .... b2, bl

in Section 2 it is obvious that the support of the measure Jin is given by
exactly n points (n EN) and by Lemma 2.1 it follows that the "reversed"
measure Ji~ has the same points as Jin' In what follows we are interested
in measures Ji (on [0, 1], [0, 00), or (- 00, 00)) for which the truncated
and reversed measure Ji~ puts equal masses on its n support points, i.e.,

1
Ji~( {x}) =-

n
(3.1 )
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This result has a geometric interpretation which we illustrate for the case
[0, 1]. The other cases are similar. Let M 2n denote the moment space

generated by probability measures. For each (c l , ... , C2n)EM2n there
corresponds a boundary point (c I ,,,,,C2n-l>f2n) for which f2n is a
minimum. This corresponds to the "lower principal representation" of
Cl> ... , C2n_1 or to (PI, ... , P2n-l' 0). Let Dn denote the nth orthogonal poly­
nomial corresponding to C I , ... , C2n-I' The hyperplane supporting M 2n at
(c I' ... , C2n _ I , f 2n) is determined by D~ and the corresponding face of M 2n

has extreme points (Xi' x~, ..., x~n), i = 1, ..., n. The measure /.l~ which puts
equal masses on its support points can be viewed as the "center" of this
face.

The classical orthogonal polynomials can essentially be characterized as
the unique polynomials whose corresponding probability measure /.l
satisfies the condition (3.1) for all nEr'\l,L More precisely we have the
following theorem.

THEOREM 3.1. (a) A probability measure /.l on [0,1] satisfies (3.1) for
all n E N if and only if /.l has Jacobi density proportional to xP(l - X t
(ex, 13 > - 1).

(b) A probability measure /.l on [0, r:JJ) satisfies (3.1) for all n E N if
and only if /.l has Laguerre density proportional to (l/f3)(x/f3Ye- x

/P

(ex> -1,13>0).

(c) A probability measure /.l on (- 00, r:JJ) satisfies (3.1) for all n EN
ifand only if /.l has the Hermite density proportional to exp[ - ((x-b )/~)2]
(a > 0, b E IR).

Proof We only give a proof of (a); parts (b) and (c) are proved in
the Appendix. In the first step we show that the measure with density
proportional to x P(1 - x)" has in fact the property (3.1).

The measures /.In and /.l~ have the same support by Lemma 2.1. For the
calculation of the weights of /.l~ we consider the Stieltjes transform of /.l~;

namely,

The demonimator Dn(z) is the Jacobi polynomial G~p,q)(z) on [0,1] with
parameters p = ex + 13 + 1 and q = 13 + 1 (see Abramowitz and Stegun
[1, p.782]). We will show that the numerator Cn(z) = G~p,q{(z) with
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parameters P = IX + P+ 3 and q =p+ 2. In this case we obtain for the
weights of Il~ at the support points Xl> Xz, ..., Xn

Il~( {Xi}) = <P(z)(z - xJI z~xi
C (X.) G(<x+ P+3. P+Z)(x.)

_ n I _ n-l I

- (djdz) Dn(z)lz=Xi - (djdz) G~rx+P+ I, P+ 1)(z)lz~Xi

1
,

n

where we have used the identity (djdz) G~p,q)(z)=nG~p~+/,q+I)(z).

In order to show that Cn(z) = G~P-':'1)(Z) with parameters P = IX + f3 + 3
and q = p+ 2 we consider the reversed sequence

~(n)_ _ n- i
PZi -Pzn-Zi-2(n_i)+I+IX+P'

-In) _ _ p+n-i+ 1
PZi ~ 1 - PZn - Zi + 1 - 2(n _ i + 1) + IX + P

(i = 1, ..., n) and obtain by an even contraction for the Stieltjes transform
of Il~

<P(z) = i 1l~({Xi})=rIl~(x)
i=1 Z-X i 0 z-x

=_11_ (izi fl41 fZn-3fzn-zl

!z-fl-!z-fz-f3-!z-f4-fs- · .. !z-fZn-Z-(Zn-1

h r - -In) r - -In) -In) (. >- 2) D ( ) - on ( )were .. 1 - PI' .. i - P i qi-I I c;;--, n Z - i = 1 Z - Xi'
k=3, ...,n

and for

(see [9] or [14]). Here we have used the usual notation for the continuant
K which is also defined in the Appendix. Thus we have for the polynomials
Cn(z) the recursive relation
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Comparing this with the recursive relation of the Jacobi polynomials on
[0, 1] with parameters P = rJ. + f3 + 3, q = f3 + 2 we find (see Abramowitz
and Stegun [1, p. 782])

Ck(z) = Gi~_+/+3,P +2)(Z).

For the reverse direction we now show that the Jacobi measure is
definitely determined by the condition (3.1), To this end consider an
(infinite) measure J.L on [0, 1] with corresponding sequence PI' P2' ... and
for n EN let J.Ln and J.L~ denote the measures corresponding to the sequences
(PI, ..., P2n _1,0) and (P2n -I> ... , PI> 0). The Stieltjes transform of the
reversed sequence is given by

<1>(z) = II dJ.L~(x)=!l P2n-11 r2n-11 W (3.2)
o z- x Iz - 11 - Iz ... - 11 '

where rj=qjPj-1 (j~2). On the other hand J.L~ puts equal weights on its
support points x I' ... , X n and we obtain

1~ 1 1[ n I (~) n 2<1>( z) =- L. -=- =- nz - - (n - 1) L. x j z -
n j= I Z Xi n i= I

+(n-2)(Ixjxj)zn-3···J/fI (z-xJ (3.3)
1<) )= I

Because the measures J.L~ and J.Ln have the same support (Lemma 2.1) we
see from the continued fraction expansion of the Stieltjes transform of the
measure J.Ln that

j~1 (Z-xj)=zn_(t 'j)zn-I+(tl j=t2 C'j)zn-2 ...

which yields

n n

L xj = L C,
j= I j= I

n n n n

L L x;xj = L L C'j'
i=1 j=i+1 ;=1 j=i+2

By a combination of the equations (3.2) and (3.3) and a comparison of the
coefficients of zn - 2 and zn - 3 in the polynomials of the numerators we now
obtain for all n~ 2 the equations

(3.4)
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Ob . h'd .. ,,2n-1 r ,,2n-1 d,,2n-I,,2n-1 r rservmgt el entltles":"'j~1 ~j=P2n-I+":"'j~2 yjan ":"'i~1 ":"'j=i+2~i~j=
,,~'n-I ,,'n-I ,,2n-2 h' h l" II d'l f L 21
..:...i~2 ":"';~i+2 YiYj+P2n-1 ":"'j~2 Yj w IC 10 OW rea I y rom emma.,
we obtain from (3.4) the equations

2n-1
(n-l)P2n_1 = L Yj

i= 2

for all n ~ 2.

(3.5)

We now simplify (3.5) using that the equations must hold for all n~ 2
which yields (for n - 1)

2n- 3

L Yj= (n-2)P2zn-3'
)=2

2n-32n-3
2 L L YiYj=(n-3)P2n-3(Y2n-4+(n-3)P2n-S)'

i=2 j=i+2

Thus (3.5) reduces to (n~3)

P2n-I[(n -1) +P2n-2] =P2n-2 +Y2n-2 + (n - 2) P2n-3

(n-2)P2n_1 [(n-l)+P2n-2]

= 2(n - 2) P2n-2 + [2q2n-2 + (n - 3)][Y2n-4 + (n - 3) P2n-S]. (3.6)

We now prove sucessively (for n ~ 2) that the solutions of the equation
(3.5) or equivalently (3.6) are given by

(n-l)P2+Y2
P2n -I = (2n - 3) P2 + 1

(n-l)p2
P2n-2 = (2n -4)P2 + 1

n=2, 3, .... (3.7)

In the case n = 2 we obtain from (3.5) (note that this case gives only one
equation for P3)

which obviously gives (3.7) for n = 2 (the second representation in (3.7) is
obvious for n = 2). Now assume that the respectation (3.7) holds from 1 to
n - 1 and consider (3.6) for n. By straightforward calculations (using the
induction hypothesis) we obtain
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Equating the two equations of (3.6), solving with respect to P2n _ 2' and
using (3.8) it follows that

[
1 (2n-7)P2+1]

P2n-2 +P2n-3- 2P2n-s(2n_6)P2+ 1

[
(2n-7)P2+1]

=(n-l) P2n-3-P2n-s(2n_6)P2+ 1 '

Now observing the representations

(2n-7)p2+ 1 P2[(n-3)P2+(I-Y2)J
P2n-3-P2n-S (2n-6)p2+ 1 = [(2n-5)P2+ IJ[(2n-6)p2+ 1J

1
(2n-7)p2+1 (n-3)P2+(1-Y2)

-P2 S =
n- (2n-6)p2+ 1 (2n-6)p2+ 1

(which follow from the induction hypothesis) we have from (3.9)

P2n - 2[(n - 3) P2 + 1 - Y2J [(2n - 5) P2 + 1 +P2J

=(n-l)p2 [(n-3)p2+1-Y2J

which reduces to

(n-l)p2
P2n-2= (2n-4)p2+ 1"

(3.9)

From the first equation given in (3.6) we now obtain (using (3.8)) by
straightforward algebra

(n -1)P2 + Y2
P2n ~ 1 = (2n - 3) P2 + 1

which shows that the solution of the equations (3.6) is given by (3.7).
Because every probability measure on [0, IJ which satisfies (3.1) for all
n EN must also satisfy the equations (3.6), we have shown that the
corresponding sequence PI' P2' ... of such a probability measure on [0, 1J
which satisfies (3.1) is determined by

(n -1)p2 + Q2Pl
P2n-l= (2n-3)p2+ 1 '

(n-l)p2
P2n-2 = (2n -4)P2 + 1 (n ~ 2).

If we replace the free parameters PI> P2 by

1
(a, fJ> -1)
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n-l
P2n-2=2n_l +C1.+{3'

{3+n
P2n-1 = 2n + C1. + {3

and by an application of Lemma 2.2(a) the assertion of the theorem
follows.

COROLLARY 3.2. The Jacobi polynomials can be characterized as the
unique orthogonal polynomials on [-1, 1] whose corresponding measure
satisfies (3.1).

The Laguerre polynomials can be characterized as the unique (up to a
scale factor) orthogonal polynomials on [0, 00) whose corresponding measure
satisfies (3.1).

The Hermite polynomials can be characterized as the unique (up to a
linear transformation) orthogonal polynomials on (- 00, (0) whose corre­
sponding measure satisfies (3.1).

Note that in the last corollary we consider the Jacobi polynomials on
[ -1, 1] while Theorem 3.1 deals with polynomials on [0, 1] for which the
derivation of the used equations is easier. By a linear transformation we
obtain the desired result on the interval [ -1, 1], where the Pi are the same
as on the interval [0, 1] (see [10]) and defined by the continued fraction
expansion of the Stieltjes transform

fl dJ-l(x) 11 2(11 2(21----- - --
-I Z - x Iz + 1 - 11 -Iz + 1 ....

We remark that in Theorem 3.1 we required Eq. (3.1) to hold for all
n EN. This is equivalent to requiring that (3.2) equal (3.3) for all n.
However, in deriving Eq. (3.4) we only compared the coefficients of zn - 2

and zn - 3. Comparing the remaining coefficients would actually overdeter­
mine our parameters. We conjecture that parts a) and b) are true if we
require that (3.1) hold only for n = 1+ 2m

, m ~ 1 and that c) holds if we
require (3.1) for n = 2m

, m ~ O.

4. THE ASYMPTOTIC DISTRIBUTION OF THE ZEROS

This section deals with the asymptotic distribution of the zeros of the
classical orthogonal polynomials. The results are well known (see [11] for
the bounded interval or [8] for an unbounded interval; see also the recent
monograph of Van Assche [12]). The proofs either require certain
extremal principles from potential theory or are based on the three term
recurrence relation and quadrature formulas. An alternative approach was
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given by Gawronski [5J which uses a continuity theorem for the Stieltjes
transform. The results of the previous section allow very simple proofs
of the asymptotic distribution of the zeros of classical orthogonal
polynomials.

THEOREM 4.1. Let p~I)(,lil(x) denote the Jacobi polynomial of degree n
(0( > -1, f3 > -1) and N~/J(,Ii)(O the number of zeros of P~/J(, Ii)(x) not
exceeding ¢ (¢E [-1,1]); then

1 1 f~ dxlim - N:,/J(,lil (0 =-
n~oo n n: -1~'

Proof From Section 3 we know that the corresponding sequence of the
Jacobi measure is given by (Lemma 2.2)

f3+n
PZn-1 = 2n + 0( + f3'

n
PZn = 2n + 1+ 0( + f3

and that the Jacobi polynomials are characterized as the polynomials for
which the measure corresponding to the truncated and reversed sequence

(PZn-l, ..., PI' 0) = (p~n), ..., P~~)_I' 0)

puts equal masses on its support points (namely, the zeros of P~/J(, (Jl(x».
From

-(n)_ _ n- i
PZi -PZn-2;- 2(n - i) + 1+ 0( + f3'

-in) _ _ f3 + n - i + I
P2i - I - P2n - 2; + I - 2(n - i + 1) + 0( + f3

we have

lim p~~) = lim p~~~ I =~.
n-+oo n-l>oo

(4.1 )

Because the moments of a probability measure are continuous functions of
the quantities PI (see [10]) it follows from (4.1) that the moments of the
discrete uniform distribution on the zeros of P~/J(· Ii)(x) converge to the
moments of the distribution which corresponds to the sequence (!, !, ... ).
This distribution is the arcsine distribution (see for example [7]) and is
determined by its moments. It now follows from the well known method of
moments of probability theory (see for example Feller [4, p. 263]) that the
discrete uniform distribution on the zeros of P~/J(,P)(x) converges to the
arcsine distribution, because its moments are converging.
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THEOREM 4.2. Let L~~)(x) denote the Laguerre polynomial of degree n
(IX> -1) and N~~)(O the number of zeros of L~~)(x) not exceeding ~ (C~ 0);
then

(O~~~ 1).

Proof Let XI' ... , X n denote the zeros of L~~)(x). From Theorem 3.1 and
Corollary 3.2 we see that the corresponding sequence of the discrete
uniform distribution on the set {x J4n }7=1 is given by

(d~n), ... , d~~)_ 1,0),

where

d~~~ I = (IX +n - i + 1)/4n U= 1, ..., n)

and we obtain as n --+ 00

lim d~) = ~ lim d~~~ I =~.
n~w

The only distribution (on [0,1]) with corresponding sequence (~,~, ... ) is
the distribution with density x -1/2( 1- x) 112 (IX = !, p= -! in Lemma 2.2a)
and the assertion of the theorem now follows by similar arguments given
in the proof of Theorem 4.1.

The next theorem is proved in the same way as Theorems 4.1 and 4.2
and its proof is therefore omitted.

THEOREM 4.3. Let Hn(x) denote the Hermite polynomial of degree nand
Nn(~) the number of zeros of Hn(x) not exceeding ~ (~EIR); then

(-1 ~ ~ ~ 1).

5. ApPENDIX

Proof of Lemma 2.1. We only give a proof of (a); all other cases are
treated similarly. The Stieltjes transforms of the measures JJ.n and JJ.~ corre­
sponding to the sequences (PI,P2, ...,Pm, 0) and (Pm,Pm-l, ""PI, 0) are
given by

II dJlAx) _.!l W ~ eml
o z-x Iz-II-Iz-'''-Irm

II dJl~(x) _.!l Pml Yml J2.
o z-x -'z-II-Iz-"'-Irm '

640/71/1-2
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where (l=Pl, C=Pj(l-pj-d, Yj=(l-Pj)Pj-l, and r m is 1 or z corre­
sponding to the case m odd or even. The support points of J1.n and J1.~ are
given by the zeros of the polynomials in the denominator (see [14]).

Pm(Z)=KC -(I 1 -(2 Z •.. -(m rJ

We now prove by induction that the polynomials Pm(x) and Qm(x) are the
same. For m = 1 this is obvious and for m = 2 we obtain

P2(z) = Z2 -Z((l + (2) =Z2 - Z(PI + Q1P2)= Z2 -Z(P2 + Q2Pl)

= Z2 - Z(P2 + }' d = Q2(Z).

For the step from m to m + 1 we have from the induction hypothesis (for
m - 1 and m - 2) and by an expansion in the last row

_r K( -Pm-l
o,m+ 1 Z 1 Z •..
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From the identity Pk='Yk+l +PkPk+l (k=m, m-1) we obtain

(
-1'm+l -1'm ... -1'2 )

Pm+ I(Z) = t"m+ lK
Z Z ... t"m

Z ••.

-PmPm+l [t"m+lK(z -1'm-l 1 .,.

15

_ K( -1'm+l-t"m+l
Z

=t"m+l [KC
-(m+l -1'm+l .,. -1'2

t"JZ

-PmPm+1KC
-1'm -1'2

t"JJZ •••

=K( -Pm+l
Z 1

(Note that we have used the identity

K( -1'm -1'm-l
z 1 z

z ...

(
-1'm -1'm-l -1'2)

=t"m+1 K 1 z 1 .. · t"m

which can also be proved by induction and straightforward calculations.)

Proof of Theorem 3.1 (b) and (a). The proofs that the Laquerre and
Hermite densities satisfy (3.1) are similar to the Jacobi case and are
omitted. The proofs that these densities are determined by (3.1) are given
below.
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Proof of part (b). By a similar reasoning as in the proof of part (a) we
obtain the equations

In-I In-I

(n-2)(n-1)dIn_ldln_3=2 L L djdj.
j= 1 j=j+1

(5.1 )

(5.2)

for all n ~ 2

2n- I

ndIn _ 1 = L di
i~l

(

In-3 ) In-I In-I

(n-1) i~l di dIn _ 1 =2 i~l j=~+ldjdj

which reduce to (Li:13 di = (n - 1) dIn - 3)

(n -1) dIn - 1 =dIn - 1+ (n-1) dIn - 3

For the second equation in (5.2) we obtain

(n-2)(n-1)dIn _ 1 dIn - 3

[

In-4 In-5 In-4 In 4 ]

=2 dIn-I i~l di +dIn - 3 i~l dj+ i~l j=~+1 djdj

= 2(n - 2) dIn-I dIn - 3+ 2(n - 2) dIn - 3dIn - 5

+ (n- 3)(n-2) dIn - 3dIn - 5

and thus (5.2) is equivalent to

(n -1) dIn - 1 =dIn - 1+ (n-1) dIn - 3
(n - 1) dIn _ 1 = 2dIn _ I + (n - 1) d2n - 5

for all n ~ 2. (5.3 )

By a straightforward calculation it can now be shown that the solution of
the equations (5.3) is given by

and part (b) of Theorem 3.1 now follows replacing d1 and dl by the
parameters of the density proportional to 1/{3(x/{3)"e- x

/P (IX> -1 (3)O),
which yields dl = (1 + IX) {3 and dl = (3.

Proof of part (c). In the same way as in part (a) we obtain the
equations (for all n ~ 1)

n+l n

n L b j=(n+l) L b j
;=1 ;=1

(5.4)
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From the first equation we get immediately that hI =h2 =h3 ••• and we let
without loss of generality hI = h2 = ... = 0 (a nonzero h only causes a shift
of the distribution). But in this case the second equation of (5.4) reduces
to

2
an =--1

n-

n-I

L a i
;= 1

(n ~ 2)

which has the solution an = na I for all n E N, and Theorem 3.1 (c) is proved
by an application of Lemma 2.1 and a linear transformation.
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